illumına

TruSight[™] Oncology 500

A comprehensive next-generation sequencing assay that targets somatic variants, TMB, and MSI status from the same FFPE tumor only sample.

Highlights

- Unlock immuno-oncology with TMB and MSI 1.94 Mb of content with sophisticated algorithms enable accurate analysis of TMB and MSI
- Save time and sample with a multiplex assay Comprehensive coverage of pan-cancer content, aligned with key guidelines spanning 523 cancer-relevant genes
- Achieve confidence in results
 Enrichment chemistry including UMIs coupled with an
 informatics pipeline for high accuracy in variant detection
- Address the needs of the oncology community both today and tomorrow Relevant and emerging biomarkers support a future-proof foundation for new solutions

One workflow for multiple tumor types and multiple biomarkers

Comprehensive genomic profiling used in recent studies with large cohorts has shown that 30-49% of samples may have informative alterations.¹⁻⁶ With limited time to return results and limited amounts of tissues, a comprehensive single assay that assesses a wide range of biomarkers increases the chances of obtaining relevant information. To help researchers address this challenge, Illumina offers TruSight Oncology 500, a next-generation sequencing (NGS) assay that analyzes 523 cancer-relevant genes from both DNA and RNA* in one integrated workflow. TruSight Oncology 500 assesses multiple variant types in a single assay (Table 1), including small nucleotide variants (SNVs), indels, splice variants, fusions, and emerging immunotherapy biomarkers that rely on analysis of multiple genomic loci, such as tumor mutational burden (TMB) and microsatellite instability (MSI).

Table 1: Variant types detected by TruSight Oncology 500

Variant type	TruSight Oncology 500	Relevant examples	
SNVs and indels	./	KRAS G12D, EGFR exon 19	
SIVIS and indels	v	deletions, BRAFV600E	
Fusions	\checkmark	ALK, ROS1, NTRK1,	
FUSIONS	v	NTRK2, NTRK3	
Splice variants	\checkmark	MET exon 14	
MSI	\checkmark	MSI-High	
TMB	\checkmark	TMB-High	

During library preparation, enrichment chemistry is optimized to capture nucleic acid targets from formalin-fixed, paraffin-embedded (FFPE) tissues. Addition of unique molecular identifiers (UMIs)⁷ during DNA library preparation, enables detection of variants at low variant allele frequency (VAF) while simultaneously suppressing errors, thus providing high specificity. Variant-calling software, developed in concert with the assay reagents, is included with the kit and can be run on external hardware provided by the laboratory.

Illumina has established partnerships with several academic centers, pharmaceutical companies, and advocacy groups, to assist with the design, development, and evaluation of new oncology applications. To facilitate such endeavors, TruSight Oncology 500 is easily integrated into current lab workflows (Figure 1) and is amenable to automation. Using proven Illumina technology, with gene content relevant across multiple tumor types and including emerging biomarkers, TruSight Oncology 500 is well-positioned to be the foundation for developing future oncology diagnostic solutions.

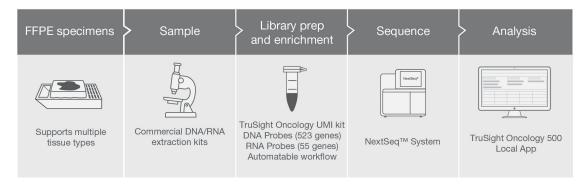


Figure 1: TruSight Oncology 500 workflow—TruSight Oncology 500 integrates into current lab workflows, going from nucleic acids to a variant calls in 3–4 days.

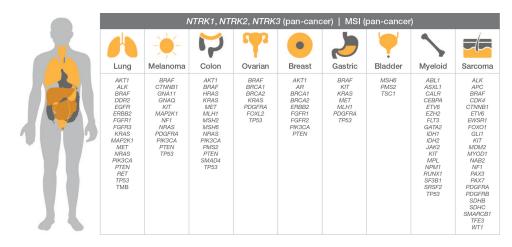
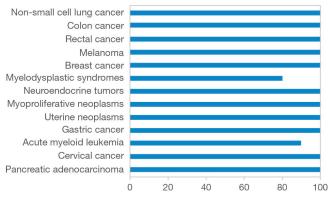



Figure 2: Tumor profiling biomarkers for multiple cancer types — Content for TruSight Oncology 500 includes key biomarkers for multiple cancer types, and emerging pancancer biomarkers such as MSI, NTRK1, NTRK2, and NTRK3.

Comprehensive content design

The TruSight Oncology 500 panel includes a comprehensive list of biomarkers commonly mutated in numerous neoplasm types (Figure 2). With simultaneous analysis of both DNA and RNA* various types of biomarkers relevant to a given tumor type (SNVs, indels, fusions, splice variants, TMB, MSI) can be assessed from the same sample in a single assay (Table 2). The panel uses a probe design that enables capture of both known fusions and novel fusions. The TruSight Oncology 500 panel includes 523 genes for SNV and indel detection and 55 genes for fusion and splice variant detection (Table 3).

Percentage of genetic markers included

Figure 3: TruSight Oncology 500 content alignment to National Comprehensive Cancer Network (NCCN) guidelines — For each cancer type, the percentage of genetic markers in current NCCN guidelines³ that are included in the gene panel is indicated.

By hamessing expertise from recognized authorities in the oncology community, content was designed to include both current guidelines and emerging biomarkers, including 100% coverage of NCCN guidelines for 11 tumor types (Figure 3),⁸ and coverage of genes involved in over 1600 clinical trials. With comprehensive coverage of variants most likely to play a role in tumorigenesis, TruSight Oncology 500 is well-positioned as a foundational assay from which new companion diagnostics can be developed.

Table 2: Multiple types of relevant biomarkers assessed for	а
comprehensive lung tumor assay	

	DNA content	RNA content*
Biomarker		
TMB	√	
MSI	√	
Biomarker genes	Small variants	Fusions
AKT1	\checkmark	
ALK	√	\checkmark
BRAF	√	\checkmark
DDR2	√	
EGFR	√	√
ERBB2	\checkmark	\checkmark
FGFR1	\checkmark	\checkmark
FGFR3	\checkmark	\checkmark
KRAS	\checkmark	
MAP2K1	\checkmark	
MET	\checkmark	\checkmark
NRAS	\checkmark	
NTRK1	\checkmark	\checkmark
NTRK2	\checkmark	\checkmark
NTRK3	\checkmark	\checkmark
PIK3CA	\checkmark	\checkmark
PTEN	\checkmark	
RET	\checkmark	\checkmark
TP53	\checkmark	

Table 3: Genes	included	in the	TruSight	Oncology	500 panel
14010 01 001100	monaaoa		maorgine	onoology	ooo panoi

ARI 1	RDD4	CLIVI	EANAITEA	GATA6	DNA conten		NOTOUA	DOLE		TAF1
ABL1	BRD4	CUX1	FAM175A		IGF1	MAP3K13	NOTCH4	POLE	RPTOR	
ABL2	BRIP1	CXCR4	FAM46C	GEN1	IGF1R	MAP3K14	NPM1	PPARG	RUNX1	TBX3
ACVR1	BTG1	CYLD	FANCA	GID4	IGF2	MAP3K4	NRAS	PPM1D	RUNX1T1	TCEB1
ACVR1B	BTK	DAXX	FANCC	GLI1	IKBKE	MAPK1	NRG1	PPP2R1A	RYBP	TCF3
AKT1	C11orf30	DCUN1D1	FANCD2	GNA11	IKZF1	MAPK3	NSD1	PPP2R2A	SDHA	TCF7L2
AKT2	CALR	DDR2	FANCE	GNA13	IL10	MAX	NTRK1	PPP6C	SDHAF2	TERC
AKT3	CARD11	DDX41	FANCF	GNAQ	IL7R	MCL1	NTRK2	PRDM1	SDHB	TERT
ALK	CASP8	DHX15	FANCG	GNAS	INHA	MDC1	NTRK3	PREX2	SDHC	TET1
ALOX12B	CBFB	DICER1	FANCI	GPR124	INHBA	MDM2	NUP93	PRKAR1A	SDHD	TET2
ANKRD11	CBL	DIS3	FANCL	GPS2	INPP4A	MDM4	NUTM1	PRKCI	SETBP1	TFE3
ANKRD26	CCND1	DNAJB1	FAS	GREM1	INPP4B	MED12	PAK1	PRKDC	SETD2	TFRC
APC	CCND2	DNMT1	FAT1	GRIN2A	INSR	MEF2B	PAK3	PRSS8	SF3B1	TGFBR1
AR	CCND3	DNMT3A	FBXW7	GRM3	IRF2	MEN1	PAK7	PTCH1	SH2B3	TGFBR2
ARAF	CCNE1	DNMT3B	FGF1	GSK3B	IRF4	MET	PALB2	PTEN	SH2D1A	TMEM12
ARFRP1	CD274	DOT1L	FGF10	H3F3A	IRS1	MGA	PARK2	PTPN11	SHQ1	TMPRSS
ARID1A	CD276	E2F3	FGF14	H3F3B	IRS2	MITF	PARP1	PTPRD	SLIT2	TNFAIP3
ARID1B	CD74	EED	FGF19	H3F3C	JAK1	MLH1	PAX3	PTPRS	SLX4	TNFRSF1
ARID2	CD79A	EGFL7	FGF2	HGF	JAK2	MLL	PAX5	PTPRT	SMAD2	TOP1
ARID5B	CD79B	EGFR	FGF23	HIST1H1C	JAK3	MLLT3	PAX7	QKI	SMAD3	TOP2A
ASXL1	CDC73	EIF1AX	FGF3	HIST1H2BD	JUN	MPL	PAX8	RAB35	SMAD4	TP53
ASXL1 ASXL2	CDH1	EIF4A2	FGF4	HIST1H3A	KAT6A	MRE11A	PBRM1	RAC1	SMAD4 SMARCA4	TP63
			-	HIST1H3A HIST1H3B						
ATM	CDK12	EIF4E	FGF5		KDM5A	MSH2	PDCD1	RAD21	SMARCB1	TRAF2
ATR	CDK4	EML4	FGF6	HIST1H3C	KDM5C	MSH3	PDCD1LG2	RAD50	SMARCD1	TRAF7
ATRX	CDK6	EP300	FGF7	HIST1H3D	KDM6A	MSH6	PDGFRA	RAD51	SMC1A	TSC1
AURKA	CDK8	EPCAM	FGF8	HIST1H3E	KDR	MST1	PDGFRB	RAD51B	SMC3	TSC2
AURKB	CDKN1A	EPHA3	FGF9	HIST1H3F	KEAP1	MST1R	PDK1	RAD51C	SMO	TSHR
AXIN 1	CDKN1B	EPHA5	FGFR1	HIST1H3G	KEL	MTOR	PDPK1	RAD51D	SNCAIP	U2AF1
AXIN2	CDKN2A	EPHA7	FGFR2	HIST1H3H	KIF5B	MUTYH	PGR	RAD52	SOCS1	VEGFA
AXL	CDKN2B	EPHB1	FGFR3	HIST1H3I	KIT	MYB	PHF6	RAD54L	SOX10	VHL
B2M	CDKN2C	ERBB2	FGFR4	HIST1H3J	KLF4	MYC	PHOX2B	RAF1	SOX17	VTCN1
BAP1	CEBPA	ERBB3	FH	HIST2H3A	KLHL6	MYCL1	PIK3C2B	RANBP2	SOX2	WISP3
BARD1	CENPA	ERBB4	FLCN	HIST2H3C	KMT2B	MYCN	PIK3C2G	RARA	SOX9	WT1
BBC3	CHD2	ERCC1	FLI1	HIST2H3D	KMT2C	MYD88	PIK3C3	RASA1	SPEN	XIAP
BCL10	CHD4	ERCC2	FLT1	HIST3H3	KMT2D	MYOD1	PIK3CA	RB1	SPOP	XPO1
BCL2	CHEK1	ERCC3	FLT3	HLA-A	KRAS	NAB2	<i>РІКЗСВ</i>	RBM10	SPTA1	XRCC2
BCL2L1	CHEK2	ERCC4	FLT4	HLA-B	LAMP1	NBN	PIK3CD	RECQL4	SRC	YAP1
BCL2L11	CIC	ERCC5	FOXA1	HLA-C	LATS1	NCOA3	PIK3CG	REL	SRSF2	YES1
BCL2L2	CREBBP	ERG	FOXL2	HNF1A	LATS2	NCOR1	PIK3R1	RET	STAG1	ZBTB2
BCL6	CRKL	ERRFI1	FOXO1	HNRNPK	LMO1	NEGR1	PIK3R2	RFWD2	STAG2	ZBTB7A
BCOR	CRLF2	ESR1	FOXP1	HOXB13	LRP1B	NF1	PIK3R3	RHEB	STAT3	ZFHX3
BCORL1	CSF1R	ETS1	FRS2	HRAS	LYN	NF2	PIM1	RHOA	STAT4	ZNF217
BCR	CSF3R	ETV1	FUBP1	HSD3B1	LZTR1	NFE2L2	PLCG2	RICTOR	STAT5A	ZNF703
BIRC3	CSNK1A1	ETV4	FYN	HSP90AA1	MAGI2	NFKBIA	PLK2	RIT1	STAT5B	ZRSR2
										20002
BLM	CTCF	ETV5	GABRA6	ICOSLG	MALT1	NKX2-1	PMAIP1	RNF43	STK11	
BMPR1A	CTLA4	ETV6	GATA1	ID3	MAP2K1	NKX3-1	PMS1	ROS1	STK40	
BRAF	CTNNA1	EWSR1	GATA2	IDH1	MAP2K2	NOTCH1	PMS2	RPS6KA4	SUFU	
BRCA1	CTNNB1	EZH2	GATA3	IDH2	MAP2K4	NOTCH2	PNRC1	RPS6KB1	SUZ12	
BRCA2	CUL3	FAM123B	GATA4	IFNGR1	MAP3K1	NOTCH3	POLD1	RPS6KB2	SYK	
					RNA content	*				
ABL1	BCL2	CSF1R	ESR1	EWSR1	FLI1	KIF5B	MSH2	NRG1	PAX7	RAF1
AKT3	BRAF	EGFR	ETS1	FGFR1	FLT1	KIT	MYC	NTRK1	PDGFRA	RET
ALK	BRCA1	EML4	ETV1	FGFR2	FLT3	MET	NOTCH1	NTRK2	PDGFRB	ROS1
AR	BRCA2	ERBB2	ETV4	FGFR3	JAK2	MLL	NOTCH2	NTRK3	PIK3CA	RPS6KB
AXL	CDK4	ERG	ETV5	FGFR4	KDR	MLLT3	NOTCH3	PAX3	PPARG	TMPRSS

Accurate assessment of TMB and MSI

TMB and MSI are emerging biomarkers that correlate with response to immunotherapies.⁹ TruSight Oncology 500 is well suited to interrogate both biomarkers, which rely upon analysis of multiple genomic loci.

Obtaining a precise and reproducible TMB value at low mutation levels can be challenging with smaller panels. Recent studies have shown that panels with larger genomic content (at least 1.5 Mb) perform well with samples containing less than 30 Mb/mutation.^{10,11} With 1.94 Mb of genomic content, TruSight Oncology 500 surpasses this requirement, demonstrating accurate TMB estimation that is highly concordant with whole-exome studies (Figure 4, Table 4).¹² The addition of UMIs during library preparation coupled with proprietary Illumina informatics reduces sequencing error rates by 10–20 fold.⁷ Removing FFPE artifacts (such as deamination, oxidation) enables analytical sensitivity as low as 5% VAF from low-quality DNA samples.

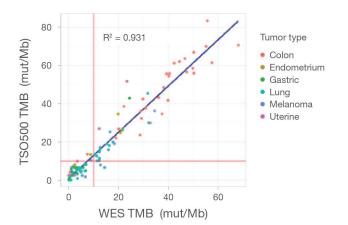


Figure 4: High concordance between TMB measurements from TruSight Oncology 500 and WES — 108 FFPE tissue samples.were analyzed by TruSight Oncology 500 (TSO500) in tumor-only workflow, and WES using tumor-normal pairs. TMB values from both assays are plotted to display high concordance ($R^2 = 0.931$).

TruSight Oncology 500 analysis uses a sophisticated proprietary algorithm to perform TMB analysis. Measuring both nonsynonymous and synonymous SNVs and indels increases analytical sensitivity by using more variants. After variant calling and error correction, germline variants and variants in low-confidence regions are filtered to deliver accurate results. Filtering germline variants also allows TMB evaluation with a tumor-only workflow (Figure 5), further supporting high-throughput sample processing.

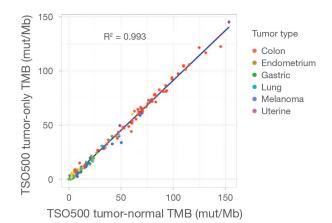


Figure 5: Reproducible TMB evaluation with tumor-only or tumor-normal workflow—TruSight Oncology 500 employs an algorithm that filters germline variants, enabling TMB analysis with a tumor-only workflow. To demonstrate concordance with tumor-normal workflows, 170 FFPE samples from six different tissue types were analyzed, and TMB values from both workflows plotted to display high concordance ($R^2 = 0.993$).

Table 4: Concordance between WES and TruSight Oncology 500 TMB classification at low value range (10 mut/Mb)

Metric	Value
Positive percent agreement	94.7%
Negative percent agreement	96.1%
Overall percent agreement	95.4%

TMB values were plotted from 108 FFPE tissue samples. Percent agreement between WES and TruSight Oncology 500 is shown for TMB-high or TMB-low classifications, with 10 mut/Mb as the threshold value (red lines in Figure 2).

MSI status is also a biomarker correlated with response to checkpoint inhibition therapy. However, high TMB does not correlate to high MSI status in many tissues tested, warranting development as an independent biomarker with new MSI profiles in previously uncharacterized cancer types.^{13,14} MSI status has been traditionally analyzed with PCR (MSI-PCR) and immunohistochemistry. While other methods deliver a qualitative result describing samples as either MSI-stable or MSI-high, NGS-based assessment with TruSight Oncology 500 interrogates 130 homopolymer MSI marker sites to calculate an accurate quantitative score for MSI status (Figure 6).¹²

As a multiplex assay, TruSight Oncology 500 can deliver answers for both TMB and MSI status from a single assay, eliminating the need to spend precious tissue sample on iterative testing.

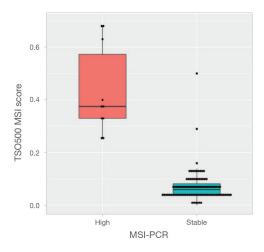


Figure 6: Quantitative assessment of MSI status — The TruSight Oncology 500 tumor-only workflow was used to analyze FFPE samples. A quantitative MSI score (Y-axis) is plotted against a qualitative score (high vs stable) obtained by analyzing the same samples with MSI-PCR (Promega MSI Analysis System).

Enrichment chemistry enables low-level variant detection from FFPE samples

TruSight Oncology 500 library preparation is based on proven target enrichment chemistry using biotinylated probes and streptavidincoated magnetic beads to purify selected targets from DNA- and RNAbased* libraries. A benefit of target enrichment chemistry is the use of probes designed large enough to impart high binding specificity, but also allowing hybridization to targets containing small mutations. This mechanism reduces sample dropouts in the presence of both natural allelic variations and sequence artifacts introduced from FFPE tissue samples. TruSight Oncology 500 can reproducibly detect variants in FFPE samples as low as 5% VAF (Figure 7).

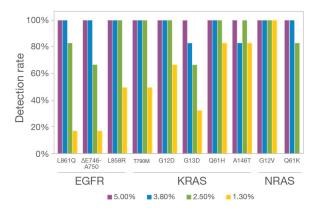


Figure 7: Small variant detection at low variant allele frequency— FFPE cell line samples with known VAF for each variant were diluted to values ranging from 1.30–5.00% VAF. Six replicates of each sample were analyzed by TruSight Oncology 500 using 40 ng DNA input.

Combined workflow for DNA and RNA*

TruSight Oncology 500 library preparation uses an enrichment method that can be simultaneously applied to DNA and RNA* extracted from the same sample. After the initial steps, in which genomic DNA is sheared and RNA* is converted to cDNA, library prep becomes a combined workflow. Sheared DNA and cDNA are converted simultaneously into sequenceable libraries. Then regions of interest are hybridized to biotinylated probes, magnetically pulled down with streptavidin-coated beads, and eluted to enrich the library pool. Finally, libraries are normalized using a simple bead-based protocol before pooling and sequencing.

Parameter	Details
System	NextSeq 550Dx or NextSeq System
Panel size	1.94 Mb DNA
	358 kb RNA*
DNA input requirement	40 ng total
RNA* input requirement	40 ng total
	Minimum recommendation of 0.65 mm ³ from
FFPE input requirement	FFPE tissue samples
	(5 slides cut at 10 microns thick)
Total assay time	3–4 days from nucleic acid to variant report
Sequence run time	24 hours (NextSeq Systems)
Sequence run	2×101 cycles
Kit size	24 or 48 samples
Sample throughput	8 samples per run (NextSeq Systems)
Limit of detection	5% VAF
	For fusions, 5 copies per ng RNA* input
Analytical sensitivity	>96% (for all variant types at 5% VAF)
Analytical specificity	>99.99%

Table 5: TruSight Oncology 500 product specifications

Summary

TruSight Oncology 500 is an NGS-based, multiplex assay that analyzes hundreds of cancer-related biomarkers in a single assay. Assessing DNA and RNA* in the same workflow supports identification of a wide range of variants implicated in various tumor types. Taking advantage of extensive genomic content, TruSight Oncology 500 also provides assessment of immunotherapy biomarkers (TMB and MSI) without requiring multiple samples for iterative testing. Using targetenrichment chemistry with sophisticated tools to reduce errors, highquality data is obtainable from FFPE samples. Leverage the power of TruSight Oncology 500 to accelerate your research goals today.

Learn more

For more information about TruSight Oncology 500, visit www.illumina.com/tso500

Table 6: Ordering information

Library prep kit	No. of indexes/samples	Catalog no.
TruSight Oncology 500 DNA Kit	16 indexes	00000010
(Includes DNA library prep and enrichment reagents. Does not include NextSeq System core reagents)	48 samples	20028213
TruSight Oncology 500 DNA Kit, for Use with NextSeq	16 indexes	20028214
(Includes DNA library prep and enrichment reagents, and NextSeq System core reagents)	System core reagents) 48 samples	
TruSight Oncology 500 DNA/RNA* Bundle ^a	16 indexes	20028215
(Includes DNA library prep and enrichment reagents. Does not include NextSeq System core reagents)	24 samples	20028215
TruSight Oncology 500 DNA/RNA* Bundle, ^a for Use with NextSeq	16 indexes	20028216
(Includes DNA library prep and enrichment reagents, and NextSeq System core reagents)	24 samples	20028216

a. The products to evaluate DNA and RNA variants (PN: 20028215/20028216) consist of the TruSight Oncology 500 DNA panel and the TruSight Tumor 170 RNA panel.

References

- Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. *Nat Commun.* 2014;5:4846. doi:10.1038/ncomms5846.
- Boland GM, Piha-Paul SA, Subbiah V, et al. Clinical next generation sequencing to identify actionable aberrations in a phase I program. Oncotarget. 2015;6(24):20099-20110.
- Massard C, Michiels S, Ferté C, et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. *Cancer Discov.* 2017;7(6):586-595.
- Harris MH, DuBois SG, Glade Bender JL, et al. Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors: The Individualized Cancer Therapy (iCat) Study. JAMA Oncol. 2016. doi: 10.1001/jamaoncol.2015.5689.
- Parsons DW, Roy A, Yang Y, et al. Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA Oncol. 2016. doi: 10.1001/jamaoncol.2015.5699.
- Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. *Nat Med.* 2017;23(6):703-713.
- Illumina (2017) TruSight Oncology UMI Reagents. (www.illumina.com/content/dam/illumina-marketing/documents/products/ datasheets/trusight-oncology-umi-reagents-datasheet-1000000050425.pdf).

- NCCN Guidelines. www.nccn.org/professionals/physician_gls/default.aspx. Accessed December 13, 2018.
- 9. Tray N, Weber JS, Adams S. Predictive Biomarkers for Checkpoint Immunotherapy: Current Status and Challenges for Clinical Application. *Cancer Immunol Res.* 2018;6(10):1122-1128.
- Buchhalter I, Rempel E, Endris V, et al. Size Matters: Dissecting Key Parameters for Panel-Based Tumor Mutational Burden (TMB) Analysis. Int J Cancer. 2018. doi: 10.1002/ijc.31878.
- Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. *Genome Med.* 2017;9(1):34. doi: 10.1186/s13073-017-0424-2.
- Illumina (2018) Analysis of TMB and MSI Status with TruSight Oncology 500. (emea.illumina.com/content/dam/illumina-marketing/documents/products/ appnotes/trusight-oncology-500-tmb-analysis-1170-2018-009.pdf).
- Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. *Cancer Med.* 2018;7(3):746-756.
- Kautto EA, Bonneville R, Miya J, et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. *Oncotarget*. 2017;8(5):7452-7463.

